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Anomalous Dynamics in the Ising Chain 
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We analyze a 1D Ising system with anomalous distributions of nearest neighbor 
interactions and show that the single-spin-flip dynamics exhibit breakdown of 
dynamic scaling. The results are obtained by a real-space numerical method 
applied to the exact equations of motion and they may be explained by domain 
wall motion arguments reformulated in terms of extreme value statistics. 
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1. I N T R O D U C T I O N  

According to the restricted dynamic  hypothesis, ~1) the characteristic time 
evolution of the order  parameter  scales with correlat ion length { according 
to the law 

~ ~ ~  (1) 

where the critical dynamical  exponent  Z is expected to depend only on 
some universal features of  the underlying model  (e.g., space and spin 
dimensionality, conservat ion laws, etc). 

However,  it was recently recognized that  universality fails in critical 
dynamics at 1D: Z is found (2"3) to depend on the distribution of inter- 
actions in the system. For  randomly  distributed, nearest neighbor inter- 
actions Ji, i+ l  with discrete but finite values, one finds 

Z = I + JM/Jm (2) 

where JM = Max{J , . ,+ ,  } and Jm = Min{J, . ,+ 1 }. 
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However, even the scaling law expressed by Eq. (1) breaks down (4 6) 
for the dilute Ising model at the percolation threshold, where one obtains 
a dependence of Z on the temperature: 

Z = A l n r  (3) 

The present work numerically analyzes a 1D Ising model that inter- 
polates between the preceding two cases: nonuniversality and breakdown 
of dynamic scaling. We consider two extreme situations of the model 
leading to Eq. (2): 

(i) Case A. Jm = 0 and the anomalous distribution P(J) = (1 - ~ )  J ~, 
0 < J ~< 1, 0 < c~ < 1. In this case 

4 -1 = - ( I n  th flJ) ,,, f l-(1-~) (4) 

where/3 = 1/K B T and T is the temperature. 

(ii) Case B. J M = o e  and the anomalous distribution P ( J ) =  
( 1 - c Q  J -2+~, 1 ~<J< oo, 0 < c ~ <  1. In this case 

~/~e ~p (5) 

As in refs. 2 and 3, dynamics is introduced in the Glauber way (7) by 
defining a single-spin flip rate 

W~(~ri) = 1/2w~ [1 - a~(7?cre_ 1 + 7+a~+ 1)] 

where ai denotes the flipping spin (~i = 4-1) and 

7 + = 1/2[th(k~,~+ 1 + k~ 1, i )  -[- th(k~,~+ ~ - k i_ 1,i)3 

with ki, i+l= Ji, i+ 1/Kn T. We assume uniform intrinsic rates wi for cases A 
and B. 

The particular situation with homogeneous interactions J~,~+ ~ = J and 
an anomalous distribution of intrinsic flipping rates P (w; )=  (1-c~)  w~ ~, 
0 < ~ <  1, 0<wi~< 1, has already been treated analytically. (8) The non- 
universal result 

Z = (2 - c0/(1 - :~)  

is reconfirmed here and it agrees with well-known random walk 
arguments. (9) 

For  the cases A and B, the usual domain wall argument (1~ has 
to be reformulated. For  a completely random, unbiased distribution of 
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exchanges, the wall is still expected to perform a random walk. The time 
to displace through a domain length (typically, 4) will therefore be 

"C ~ ~2"~MA x 

Here, rMAX is the maximum time step (within ~) for wall motion; this is 
expected to be given by an activation law 

ZMAX ~ exp{2fi[JM(~) -- Jm(~)] } (6) 

where JM(~.) [Jm(~)] is the greatest (smallest) exchange which the wall 
meets on a length scale 4. Accordingly, we find: 

(i) Case A: 

or, using Eq. (4), we obtain 

(ii) Case B: 

.~ ~ ~2e2 f l  

log r ~ ~1/(1 ~) (7a) 

T, ~ ~2e2flJM(~-) 

where JM(~)~ ~1/~l-~). Using Eq. (5), we obtain 

log �9 ~ ~1/(1 ~) log (7b) 

We thus expect strong violations of the scaling law; in case A, they 
arise from the anomalous thermal dependence of the correlation length 
(dominated by weak bonds), and, in case B, from arbitrarily large energy 
barriers found by the wall in its motion. 

To check these predictions, we now consider an exact formulation of 
dynamics and we shall use numerical renormalization group methods to 
extract the long-time behavior. 

2. B A S I C  T H E O R Y  

Following the stochastic formulation of Glauber, (7) the exact equa- 
tions of motion for the mean value of a; (Mi = ( a i ) , )  may be written as 

d / d t M i = w ~ ( - M i + v ; - M i  1 +7[M~+1) (8a) 

Taking the Laplace transform 

fo +~ 
M,(s)  = e "M, ( t )  dt 
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Eq. (8a) reads 

Mi(s )=F[ -M~_~(s )+FTM~+~(s )+M~( t=O) / (w~+s  ) (8b) 

where F+(s)  = y/-+/(1 +s/wi). 
The inhomogeneous terms in Eq. (8b), associated with the initial con- 

dition Mi(t  = 0), are irrelevant since the relaxation times for the system are 
determined by the eigenvalues of the matrix associated with the corre- 
sponding homogeneous equation. We observe that the above equations still 
hold (for i r 0) if we fix the spin at the origin through, e.g., application of 
a sufficiently strong magnetic field (the equation for i = 0 is, of course, dif- 
ferent from the above). In this case, Mi(t)  represents the time-dependent, 
averaged magnetization conditioned to a fixed magnetization at the 
origin--that is, M~(t) directly expresses the time-dependent two-spin 
correlation and this is expected to show exponential space decay, not only 
at equilibrium (s = 0), but also away from equilibrium. We shall show that 
these expectations are fulfilled, and may therefore introduce a dynamic 
correlation length, which goes over to the usual thermodynamic one in the 
static (s = 0) limit. 

We now apply real-space renormalization-group techniques to deal 
with Eq. (8b). By decimating every odd spin, the new equations are for- 
mally identical to the old ones, but with renormalized parameters 

+ + 
F i ,  + _ F2iF2i-- 1 (9) 

1 - F f F ~ +  + 1 --  F 2 i F 2 i  1 

After successive iteractions, each one doubling the lattice spacing, the 
origin will have at the rescaled lattice a nearest neighbor which, in the 
original lattice, is many lattice spacings apart. The iterated parameters F, -+ 
will therefore envolve toward the averaged two-spin correlation function 
and this will decay exponentially (at least at large distances, in the 
inhomogeneous lattice, and for the static case). 

In the homogeneous case, Eq. (9) reads 

F'  = F2/(1 - 2F 2) 

or  

Z' 1=2Z 1 (10) 

w i t h F = l / ( 2 c h z  1). For T ~ T c = O , s ~ O ,  

Z 1(~ --1, S) ~ (S + ~2)1/2 ~ ~ 1(1 _~ IS~2 ) 
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that is, after n (2 n > {) iterations 

F ( m ~ e  .2~z I (~ - I ' s )  (11) 

In this case, we may therefore interpret Z as a dynamic correlation 
length. 

In the limit {-* =0 ,  Eq. (10) implies 

Z l (s)  ~ s l / z  with z = 2  (12) 

We generalize to the disordered case the preceding scaling behavior 
(10), (11) by stating as an ansatz that z n / b  n --+ )~ as n --+ 0% where Z(~. -~, s) 
obeys the scaling form 

Z 1( b~- ' , b Z s ) = b ) ( . - ' ( ~ - l ,  s)  (13) 

where b = 2 is the lattice rescaling factor. 
Moreover, we smooth out inhomogeneities, taking for Zn an average 

defined by 

b" - 1 N/(bn-- 1) 
N ~ V +(') = 1/(2 ch Z21) (14) 

i = 1  

3. R E S U L T S  

We use a numerical renormalization of a chain of N=215 spins suc- 
cessfully tested in a previous case, (2,3) where a random, discrete distribution 
of interactions with finite values was used. This procedure, similar to that 
of refs. 11 and 12, consists in first generating the chain according to the 
relevant distribution. Next, the system is renormalized using Eq. (9) in suc- 
cessive iterations; and finally, an extrapolation of )5- ~(~ ~, s) according to 
Eq. (14) is obtained. An average over 10 realizations (100 in case B) of 
each system is also performed. 

Case A required about 4 h r  of CPU on an APPLE-MAC II 
microcomputer for each value of c~. 

We use the well-known random number generator (13) 

J ( i  = Xi 24 + Xt 55 (rood 1) 

that permits a cycle of more than 25s. This algorithm is initialized by 
generating the first 5 0 X  i (0 < Xi~< 1) using any simpler generator (or the 
system's). 
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Our  main  results follow. 

(i) In the case of homogeneous  interactions and wn anomalous ly  
distributed, one can set T =  0 and, using Eq. (13), obta in  

Z l(s) ~ s l / z  

This fits da ta  very well, as is i l lustrated (for ~ = 1/2) in Fig. 1. Using other  
values of ~, we checked the result z = (2 - ~)/(1 - c0. (6) 

(ii) In case A, we m a y  cast Eq. (13) in the form 

Z--1/~ -1 -~- f(s"c) ( 1 5 )  

= r(~) and f(x) is a scaling function. Fo r  sr < 1 

This was used to extract  r(~) as is shown in Fig. 2 for c~ = 1/2. A plot  of 
log r versus fi permits  us to confirm the scaling relation of Eq. (7a): for 
c~ = 1/2 (Fig. 3) such a dependence is confirmed within 2 %. 

Therefore,  we obta in  

z ~ fl/log/~ (16) 

which is manifestly a consequence of the anomalous  dependence of Eq. (4) 
of ~ on the temperature .  

0 . 2 5  

0 . 7 5  , , , , . 

1 0 1 2 3 4 5 

Fig. 1. Case of anomalous ly  distributed intrinsic flipping rates (~ = 1/2): log ~ versus log s. It  
is found that 1/z-0.32. 
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Fig. 2. Case A ( , = 1 / 2 ,  ~ = 1 2 ) :  log(){ 1/r l_l)/(_logs) versus - 1 / l o g s .  The  slope 
represents  log ~. 
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Fig. 3. Case  A (~ = 1/2): log r versus  ft. It is found tha t  r ~ e h/~, with b = 2.05. 
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Fig. 4. Case B [ 1 / ( 1 -  c~)= 1.1 ]: - l o g  s versus Z 1/3-1- The labels refer to the values of r 
and the vertical bar at Z t /~- i  =0.75 corresponds to the a fixed value x = s z  for which we 
read from the graph the value of log z(~). 
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Fig. 5. Case B [ 1 / ( 1 - c 0 =  1.1]: log ~ versus ~1.1 log ~. 
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(ii) For case B we use the full scaling form (15), as illustrated in 
Fig. 4: we extract log ~ by first fixing x =sr(~)  and varying ~. In Fig. 5 we 
obtain a good fitting for Eq. (7b). 

It must be emphasized that the dependence expressed by Eq. (7b), 
contrary to case A, comes purely from the dynamics of the model: 
the existence of very "slow spins" with a flipping rate that goes as 
exp[-2fl ]JM(~)-Jm(~)]'] over a length ~, as expressed by Eq. (6). 

These results must be confronted with the domain wall argument of 
ref. 3: 

( 1 7 )  

In case A this gives essentially the dependence of Eq. (7a): 

- 

However, for case B, Eq. (17) fails to hold, and the mean values have to 
be interpreted in terms of extreme value statistics over a length ~ giving 
Eq. (7b). 

4. C O N C L U S I O N S  

In conclusion, we have tested our method and hypotheses in the case 
with anomalous randomness, (6) for which an analytic result is known. 

We analyzed a 1D system where the restricted dynamic scaling 
hypothesis breaks down, leading to a temperature-dependent dynamic 
exponent, as in Eq. (16). We also have shown the existence of a situation 
(case B) where the usual domain wall argument (1~ has to be reformulated 
in terms of the statistics of extreme values over a length ~. 

Our analysis supports the concept of a dynamic correlation length 
Z(~ - 1, s) which, for a given frequency s, describes the decay of spin correla- 
tions and goes over to the equilibrium correlation length ~ in the static 
limit (s = 0). 
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